On Generic Groups and Related Bilinear Problems
نویسندگان
چکیده
Groups with pairing are now considered as standard building blocks for cryptographic primitives. The security of schemes based on such groups relies on hypotheses related to the discrete logarithm problem. As these hypotheses are not proved, one would like to have some positive security argument for them. It is usual to assess their security in the so called generic group model introduced by Nechaev and Shoup. Over the time, this model has been extended in different directions to cover new features. The relevance of this model is nevertheless subject to criticisms: in particular, the fact that the answer to any fresh query is a random bit string is not what one expects from a usual group law. In this paper, we develop a generic group model with pairing which generalizes all the models seen so far in the literature. We provide a general framework in order to prove difficulty assumptions in this setting. In order to improve the realism of this model, we introduce the notion of pseudo-random families of groups. We show how to reduce the security of a problem in such a family to the security of the same problem in the generic group model and to the security of an underlying strong pseudo-random family of permutations.
منابع مشابه
On continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کامل$n$-factorization Property of Bilinear Mappings
In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...
متن کاملPractical Functional Encryption for Bilinear Forms
We present a practically efficient functional encryption scheme for the class of functionalities that can be expressed via bilinear forms over the integers. Bilinear forms are a general class of quadratic functions that includes, for instance, multivariate quadratic polynomials. Our realization works over asymmetric bilinear groups and is surprisingly simple, efficient and easy to implement. Fo...
متن کاملThe Semi-Generic Group Model and Applications to Pairing-Based Cryptography
In pairing-based cryptography the Generic Group Model (GGM) is used frequently to provide evidence towards newly introduced hardness assumptions. Unfortunately, the GGM does not reflect many known properties of bilinear group settings and thus hardness results in this model are of limited significance. This paper proposes a novel computational model for pairing-based cryptography, called the Se...
متن کاملConvertible limited (multi-) verifier signature: new constructions and applications
A convertible limited (multi-) verifier signature (CL(M)VS) provides controlled verifiability and preserves the privacy of the signer. Furthermore, limited verifier(s) can designate the signature to a third party or convert it into a publicly verifiable signature upon necessity. In this proposal, we first present a generic construction of convertible limited verifier signature (CLVS) into which...
متن کامل